

 Navigation

 	
 index

 	
 modules |

 	Flask-Diced 0.2 documentation

Flask-Diced - CRUD views generator for Flask

Flask-Diced is a set of helper classes for Flask [http://flask.pocoo.org/] that generates CRUD views
and registers them to blueprint/application.

Flask-Diced provides:

	Detail view

	Index view

	Create view

	Edit view

	Delete view

Flask-Diced Might Not Be What You Want

Flask-Diced is opinionated, it assumes:

	the model object has a save method for data persistence and
delete method to remove itself.

	the model can be created with no required arguments.

	the form used for creation and editing are in the style of Flask-WTF [https://pypi.python.org/pypi/Flask-WTF]‘s,
specifically, Flask-Diced expects the form accepts a named parameter
obj to pass in the initial value for editing as well as
validate_on_submit method and populate_obj method on the form
class. In short, just use Flask-WTF.

	the client should be redirected when done for POST requests.

	views should have minimal business logic.

Flask-Diced is Extensible

Flask-Diced is designed in a way that customizations can be easily done. All
properties and methods can be overridden for customization.

Flask-Diced can be customized to the point that the assumptions described in
last section are refer to the default implementation and will no longer hold
true if you customize relevant parts of it.

e.g.,

Want to change how the objects list is fetched?

Override query_all

Want to change the name of endpoint of the edit view?

Redefine edit_endpoint

Want to use your own view function or control how views are registered?

Override respective view/register methods.

Installation

Flask-Diced is on PyPI.

pip install Flask-Diced

License

BSD New, see LICENSE for details.

Links

	Documentation [http://flask-diced.readthedocs.org/]

	Issue Tracker [https://github.com/pyx/flask-diced/issues/]

	Source Package @ PyPI [https://pypi.python.org/pypi/Flask-Diced/]

	Mercurial Repository @ bitbucket [https://bitbucket.org/pyx/flask-diced/]

	Git Repository @ Github [https://github.com/pyx/flask-diced/]

	Git Repository @ Gitlab [https://gitlab.com/pyx/flask-diced/]

	Development Version [http://github.com/pyx/flask-diced/zipball/master#egg=Flask-diced-dev]

Example

The python code of an example application is included entirely here.

#!/usr/bin/env python
-*- coding: utf-8 -*-
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_wtf import Form
from wtforms import TextField, SubmitField
from wtforms.fields.html5 import EmailField
from wtforms.validators import DataRequired, Email, ValidationError

from flask_diced import Diced, persistence_methods

app = Flask(__name__)

Need this for WTForm CSRF protection
app.config['SECRET_KEY'] = 'no one knows'

Need this for SQLAlchemy
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///:memory:'

db = SQLAlchemy(app)

persistence_methods is a class decorator that adds save and delete methods
@persistence_methods(db)
class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 username = db.Column(db.String(80), unique=True)
 email = db.Column(db.String(120), unique=True)

def unique(model, column, message='already exists'):
 def unique_validator(form, field):
 obj = model.query.filter(column == field.data).first()
 if obj and obj.id != form._obj_id:
 raise ValidationError(message)
 return unique_validator

class UserForm(Form):
 username = TextField('Username',
 [DataRequired(), unique(User, User.username)])
 email = EmailField('Email',
 [DataRequired(), Email(), unique(User, User.email)])

 def __init__(self, **kwargs):
 super(UserForm, self).__init__(**kwargs)
 self._obj_id = kwargs['obj'].id if 'obj' in kwargs else None

class CreateUserForm(UserForm):
 submit = SubmitField('Create')

class EditUserForm(UserForm):
 submit = SubmitField('Update')

class DeleteForm(Form):
 submit = SubmitField('Delete')

view decorator that does nothing, for showing how to add decorators to views
def no_op_decorator(view):
 return view

create a view generator for User model, these two arguments for decorators
are here for demonstration purpose and are not mandatory
user_view = Diced(
 model=User,
 create_form_class=CreateUserForm,
 edit_form_class=EditUserForm,
 delete_form_class=DeleteForm,
 index_decorators=[no_op_decorator],
 edit_decorators=[no_op_decorator, no_op_decorator],
)

Register on application directly, works on Blueprint as well
user_view.register(app)

if __name__ == '__main__':
 db.create_all()
 app.run(debug=True)

In this example, Diced is used directly and required
attributes are passed in when creating an instance of the class, another way is
to subclass and define required attributes as class attributes, as in:

class UserView(Diced):
 model = User
 create_form_class = CreateUserForm
 edit_form_class = EditUserForm
 delete_form_class = DeleteForm

user_view = UserView()
user_view.register(app)

API

Flask-Diced - CRUD views generator for Flask

	
class flask_diced.Detail[source]

	Bases: object

detail view mixin

	
detail_decorators = ()

	decorators to be applied to detail view

	
detail_endpoint = 'detail'

	the endpoint for the detail view URL rule

	
detail_rule = '/<int:pk>/'

	the URL rule for the detail view

	
detail_template

	default template name for detail view

generated with object_name and detail_endpoint

	
detail_view(pk)[source]

	detail view function

	Parameters:	pk – the primary key of the model to be shown.

	
register_detail_view(blueprint)[source]

	register detail view to blueprint

	Parameters:	blueprint – the Flask Blueprint or Application object to which the detail view
will be registered.

	
class flask_diced.Index[source]

	Bases: object

index view mixin

	
index_decorators = ()

	decorators to be applied to index view

	
index_endpoint = 'index'

	the endpoint for the index view URL rule

	
index_rule = '/'

	the URL rule for the index view

	
index_template

	default template name for index view

generated with object_name and index_endpoint

	
index_view()[source]

	index view function

	
register_index_view(blueprint)[source]

	register index view to blueprint

	Parameters:	blueprint – the Flask Blueprint or Application object to which the index view
will be registered.

	
class flask_diced.Create[source]

	Bases: object

create view mixin

	
create_decorators = ()

	decorators to be applied to create view

	
create_endpoint = 'create'

	the endpoint for the create view URL rule

	
create_flash_message = None

	the message to be flashed for the next request when done

	
create_form_class = None

	the form class for new object, with Flask-WFT compatible API,
this attribute is mandatory if create view is enabled unless the
default view create_view() is overridden and does not use it

	
create_form_name = 'form'

	the name for variable representing the form in template

	
create_redirect_to_view = '.index'

	the name of view to redirect the client to when done

	
create_redirect_url

	the url the client will be redirected to when done

the default value is the url of create_redirect_to_view

	
create_rule = '/create/'

	the URL rule for the create view

	
create_template

	default template name for create view

generated with object_name and create_endpoint

	
create_view()[source]

	create view function

	
register_create_view(blueprint)[source]

	register create view to blueprint

	Parameters:	blueprint – the Flask Blueprint or Application object to which the create view
will be registered.

	
class flask_diced.Edit[source]

	Bases: object

edit view mixin

	
edit_decorators = ()

	decorators to be applied to edit view

	
edit_endpoint = 'edit'

	the endpoint for the edit view URL rule

	
edit_flash_message = None

	the message to be flashed for the next request when done

	
edit_form_class = None

	the form class for editing object, with Flask-WFT compatible API,
this attribute is mandatory if edit view is enabled unless the
default view edit_view() is overridden and does not use it

	
edit_form_name = 'form'

	the name for variable representing the form in template.

	
edit_redirect_to_view = '.index'

	the name of view to redirect the client to when done

	
edit_redirect_url

	the url the client will be redirected to when done

the default value is the url of edit_redirect_to_view

	
edit_rule = '/<int:pk>/edit/'

	the URL rule for the edit view

	
edit_template

	default template name for edit view

generated with object_name and edit_endpoint

	
edit_view(pk)[source]

	edit view function

	Parameters:	pk – the primary key of the model to be edited.

	
register_edit_view(blueprint)[source]

	register edit view to blueprint

	Parameters:	blueprint – the Flask Blueprint or Application object to which the edit view
will be registered.

	
class flask_diced.Delete[source]

	Bases: object

delete view mixin

	
delete_decorators = ()

	decorators to be applied to delete view

	
delete_endpoint = 'delete'

	the endpoint for the delete view URL rule

	
delete_flash_message = None

	the message to be flashed for the next request when done

	
delete_form_class = None

	the form class for deletion confirmation, should validate if confirmed
this attribute is mandatory if delete view is enabled unless the
default view delete_view() is overridden and does not use it

	
delete_form_name = 'form'

	the name for variable representing the form in template

	
delete_redirect_to_view = '.index'

	the name of view to redirect the client to when done

	
delete_redirect_url

	the url the client will be redirected to when done

the default value is the url of delete_redirect_to_view

	
delete_rule = '/<int:pk>/delete/'

	the URL rule for the delete view

	
delete_template

	default template name for delete view

generated with object_name and delete_endpoint

	
delete_view(pk)[source]

	delete view function

	Parameters:	pk – the primary key of the model to be deleted.

	
register_delete_view(blueprint)[source]

	register delete view to blueprint

	Parameters:	blueprint – the Flask Blueprint or Application object to which the delete view
will be registered.

	
class flask_diced.Base(**options)[source]

	Bases: object

base class with properties and methods used by mixins

	
__init__(**options)[source]

	create an instance of view generator

all keyword arguments passed in will be set as the instance’s
attribute if the name is not starting with ‘_’

	
exclude_views = set([])

	views that will not be registered when register() is called, even
if they are also listed in views

	
model = None

	the model class, this attribute is mandatory

	
object_list_name

	default name for variable representing list of objects in templates

generated with object_name in detault implementation.

	
object_name

	default name for variable representing object in templates

generated with the name of model class in detault implementation.

	
query_all()[source]

	returns all objects

	
query_object(pk)[source]

	returns the object with matching pk

	
register(blueprint)[source]

	register all enabled views to the blueprint

	Parameters:	blueprint – the Flask Blueprint or Application object to which enalbed views
will be registered.

	
views = set(['edit', 'index', 'create', 'detail', 'delete'])

	views that will be registered when register() is called

	
class flask_diced.Diced(**options)[source]

	Bases: flask_diced.Detail, flask_diced.Index, flask_diced.Create, flask_diced.Edit, flask_diced.Delete, flask_diced.Base

CRUD views generator

	
flask_diced.persistence_methods(datastore)[source]

	class decorator that adds persistence methods to the model class

	Parameters:	datastore – SQLAlchemy style datastore, should sopport
datastore.session.add(), datastore.session.delete()
and datastore.session.commit() for model persistence.

Two persistence methods will be added to the decorated class

	save(self, commit=True)

	the save method

	delete(self, commit=True)

	the delete method

Changelog

Version 0.2

	Removed test runner dependency in end user installation

Version 0.1

	Initial public release

 Copyright 2016, Philip Xu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Flask-Diced 0.2 documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 flask_diced	

 Copyright 2016, Philip Xu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Flask-Diced 0.2 documentation

Index

 _
 | B
 | C
 | D
 | E
 | F
 | I
 | M
 | O
 | P
 | Q
 | R
 | V

_

 	

 	__init__() (flask_diced.Base method)

B

 	

 	Base (class in flask_diced)

C

 	

 	Create (class in flask_diced)

 	create_decorators (flask_diced.Create attribute)

 	create_endpoint (flask_diced.Create attribute)

 	create_flash_message (flask_diced.Create attribute)

 	create_form_class (flask_diced.Create attribute)

 	create_form_name (flask_diced.Create attribute)

 	

 	create_redirect_to_view (flask_diced.Create attribute)

 	create_redirect_url (flask_diced.Create attribute)

 	create_rule (flask_diced.Create attribute)

 	create_template (flask_diced.Create attribute)

 	create_view() (flask_diced.Create method)

D

 	

 	Delete (class in flask_diced)

 	delete_decorators (flask_diced.Delete attribute)

 	delete_endpoint (flask_diced.Delete attribute)

 	delete_flash_message (flask_diced.Delete attribute)

 	delete_form_class (flask_diced.Delete attribute)

 	delete_form_name (flask_diced.Delete attribute)

 	delete_redirect_to_view (flask_diced.Delete attribute)

 	delete_redirect_url (flask_diced.Delete attribute)

 	delete_rule (flask_diced.Delete attribute)

 	

 	delete_template (flask_diced.Delete attribute)

 	delete_view() (flask_diced.Delete method)

 	Detail (class in flask_diced)

 	detail_decorators (flask_diced.Detail attribute)

 	detail_endpoint (flask_diced.Detail attribute)

 	detail_rule (flask_diced.Detail attribute)

 	detail_template (flask_diced.Detail attribute)

 	detail_view() (flask_diced.Detail method)

 	Diced (class in flask_diced)

E

 	

 	Edit (class in flask_diced)

 	edit_decorators (flask_diced.Edit attribute)

 	edit_endpoint (flask_diced.Edit attribute)

 	edit_flash_message (flask_diced.Edit attribute)

 	edit_form_class (flask_diced.Edit attribute)

 	edit_form_name (flask_diced.Edit attribute)

 	

 	edit_redirect_to_view (flask_diced.Edit attribute)

 	edit_redirect_url (flask_diced.Edit attribute)

 	edit_rule (flask_diced.Edit attribute)

 	edit_template (flask_diced.Edit attribute)

 	edit_view() (flask_diced.Edit method)

 	exclude_views (flask_diced.Base attribute)

F

 	

 	flask_diced (module)

I

 	

 	Index (class in flask_diced)

 	index_decorators (flask_diced.Index attribute)

 	index_endpoint (flask_diced.Index attribute)

 	

 	index_rule (flask_diced.Index attribute)

 	index_template (flask_diced.Index attribute)

 	index_view() (flask_diced.Index method)

M

 	

 	model (flask_diced.Base attribute)

O

 	

 	object_list_name (flask_diced.Base attribute)

 	

 	object_name (flask_diced.Base attribute)

P

 	

 	persistence_methods() (in module flask_diced)

Q

 	

 	query_all() (flask_diced.Base method)

 	

 	query_object() (flask_diced.Base method)

R

 	

 	register() (flask_diced.Base method)

 	register_create_view() (flask_diced.Create method)

 	register_delete_view() (flask_diced.Delete method)

 	

 	register_detail_view() (flask_diced.Detail method)

 	register_edit_view() (flask_diced.Edit method)

 	register_index_view() (flask_diced.Index method)

V

 	

 	views (flask_diced.Base attribute)

 Copyright 2016, Philip Xu.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Diced 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Philip Xu.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_modules/flask_diced.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Diced 0.2 documentation »

 		Module code »

 Source code for flask_diced

-*- coding: utf-8 -*-
"""Flask-Diced - CRUD views generator for Flask"""

from flask import flash, redirect, render_template, url_for

__version__ = '0.2'

__all__ = [
 'Detail', 'Index', 'Create', 'Edit', 'Delete',
 'Base', 'Diced',
 'persistence_methods',
]

def apply_decorators(func, decorators):
 for decorator in reversed(decorators):
 func = decorator(func)
 return func

[docs]def persistence_methods(datastore):
 """class decorator that adds persistence methods to the model class

 :param datastore:
 SQLAlchemy style datastore, should sopport
 :code:`datastore.session.add()`, :code:`datastore.session.delete()`
 and :code:`datastore.session.commit()` for model persistence.

 Two persistence methods will be added to the decorated class

 :data:`save(self, commit=True)`
 the save method

 :data:`delete(self, commit=True)`
 the delete method
 """
 def class_decorator(cls):
 def save(self, commit=True):
 datastore.session.add(self)
 if commit:
 datastore.session.commit()

 def delete(self, commit=True):
 datastore.session.delete(self)
 if commit:
 datastore.session.commit()

 cls.save = save
 cls.delete = delete
 return cls
 return class_decorator

[docs]class Detail(object):
 """detail view mixin"""

 #: decorators to be applied to detail view
 detail_decorators = ()

 #: the endpoint for the detail view URL rule
 detail_endpoint = 'detail'

 #: the URL rule for the detail view
 detail_rule = '/<int:pk>/'

 @property
 def detail_template(self):
 """default template name for detail view

 generated with :attr:`~Base.object_name` and :attr:`detail_endpoint`
 """
 return '{}/{}.html'.format(self.object_name, self.detail_endpoint)

[docs] def detail_view(self, pk):
 """detail view function

 :param pk:
 the primary key of the model to be shown.
 """
 context = {self.object_name: self.query_object(pk)}
 return render_template(self.detail_template, **context)

[docs] def register_detail_view(self, blueprint):
 """register detail view to blueprint

 :param blueprint:
 the Flask Blueprint or Application object to which the detail view
 will be registered.
 """
 view = apply_decorators(self.detail_view, self.detail_decorators)
 blueprint.add_url_rule(self.detail_rule, self.detail_endpoint, view)

[docs]class Index(object):
 """index view mixin"""

 #: decorators to be applied to index view
 index_decorators = ()

 #: the endpoint for the index view URL rule
 index_endpoint = 'index'

 #: the URL rule for the index view
 index_rule = '/'

 @property
 def index_template(self):
 """default template name for index view

 generated with :attr:`~Base.object_name` and :attr:`index_endpoint`
 """
 return '{}/{}.html'.format(self.object_name, self.index_endpoint)

[docs] def index_view(self):
 """index view function"""
 context = {self.object_list_name: self.query_all()}
 return render_template(self.index_template, **context)

[docs] def register_index_view(self, blueprint):
 """register index view to blueprint

 :param blueprint:
 the Flask Blueprint or Application object to which the index view
 will be registered.
 """
 view = apply_decorators(self.index_view, self.index_decorators)
 blueprint.add_url_rule(self.index_rule, self.index_endpoint, view)

[docs]class Create(object):
 """create view mixin"""

 #: decorators to be applied to create view
 create_decorators = ()

 #: the endpoint for the create view URL rule
 create_endpoint = 'create'

 #: the message to be flashed for the next request when done
 create_flash_message = None

 #: the form class for new object, with Flask-WFT compatible API,
 #: this attribute is **mandatory** if create view is enabled unless the
 #: default view :meth:`create_view` is overridden and does not use it
 create_form_class = None

 #: the name for variable representing the form in template
 create_form_name = 'form'

 #: the name of view to redirect the client to when done
 create_redirect_to_view = '.index'

 #: the URL rule for the create view
 create_rule = '/create/'

 @property
 def create_redirect_url(self):
 """the url the client will be redirected to when done

 the default value is the url of :attr:`create_redirect_to_view`
 """
 return url_for(self.create_redirect_to_view)

 @property
 def create_template(self):
 """default template name for create view

 generated with :attr:`~Base.object_name` and :attr:`create_endpoint`
 """
 return '{}/{}.html'.format(self.object_name, self.create_endpoint)

[docs] def create_view(self):
 """create view function"""
 form = self.create_form_class()
 if form.validate_on_submit():
 obj = self.model()
 form.populate_obj(obj)
 obj.save()
 message = self.create_flash_message
 if message is None:
 message = self.object_name + ' created'
 if message:
 flash(message)
 return redirect(self.create_redirect_url)
 context = {self.create_form_name: form}
 return render_template(self.create_template, **context)

[docs] def register_create_view(self, blueprint):
 """register create view to blueprint

 :param blueprint:
 the Flask Blueprint or Application object to which the create view
 will be registered.
 """
 view = apply_decorators(self.create_view, self.create_decorators)
 blueprint.add_url_rule(
 self.create_rule, self.create_endpoint, view,
 methods=['GET', 'POST'])

[docs]class Edit(object):
 """edit view mixin"""

 #: decorators to be applied to edit view
 edit_decorators = ()

 #: the endpoint for the edit view URL rule
 edit_endpoint = 'edit'

 #: the message to be flashed for the next request when done
 edit_flash_message = None

 #: the form class for editing object, with Flask-WFT compatible API,
 #: this attribute is **mandatory** if edit view is enabled unless the
 #: default view :meth:`edit_view` is overridden and does not use it
 edit_form_class = None

 #: the name for variable representing the form in template.
 edit_form_name = 'form'

 #: the name of view to redirect the client to when done
 edit_redirect_to_view = '.index'

 #: the URL rule for the edit view
 edit_rule = '/<int:pk>/edit/'

 @property
 def edit_redirect_url(self):
 """the url the client will be redirected to when done

 the default value is the url of :attr:`edit_redirect_to_view`
 """
 return url_for(self.edit_redirect_to_view)

 @property
 def edit_template(self):
 """default template name for edit view

 generated with :attr:`~Base.object_name` and :attr:`edit_endpoint`
 """
 return '{}/{}.html'.format(self.object_name, self.edit_endpoint)

[docs] def edit_view(self, pk):
 """edit view function

 :param pk:
 the primary key of the model to be edited.
 """
 obj = self.query_object(pk)
 form = self.edit_form_class(obj=obj)
 if form.validate_on_submit():
 form.populate_obj(obj)
 obj.save()
 message = self.edit_flash_message
 if message is None:
 message = self.object_name + ' updated'
 if message:
 flash(message)
 return redirect(self.edit_redirect_url)
 context = {self.edit_form_name: form}
 return render_template(self.edit_template, **context)

[docs] def register_edit_view(self, blueprint):
 """register edit view to blueprint

 :param blueprint:
 the Flask Blueprint or Application object to which the edit view
 will be registered.
 """
 view = apply_decorators(self.edit_view, self.edit_decorators)
 blueprint.add_url_rule(
 self.edit_rule, self.edit_endpoint, view, methods=['GET', 'POST'])

[docs]class Delete(object):
 """delete view mixin"""

 #: decorators to be applied to delete view
 delete_decorators = ()

 #: the endpoint for the delete view URL rule
 delete_endpoint = 'delete'

 #: the message to be flashed for the next request when done
 delete_flash_message = None

 #: the form class for deletion confirmation, should validate if confirmed
 #: this attribute is **mandatory** if delete view is enabled unless the
 #: default view :meth:`delete_view` is overridden and does not use it
 delete_form_class = None

 #: the name for variable representing the form in template
 delete_form_name = 'form'

 #: the name of view to redirect the client to when done
 delete_redirect_to_view = '.index'

 #: the URL rule for the delete view
 delete_rule = '/<int:pk>/delete/'

 @property
 def delete_redirect_url(self):
 """the url the client will be redirected to when done

 the default value is the url of :attr:`delete_redirect_to_view`
 """
 return url_for(self.delete_redirect_to_view)

 @property
 def delete_template(self):
 """default template name for delete view

 generated with :attr:`~Base.object_name` and :attr:`delete_endpoint`
 """
 return '{}/{}.html'.format(self.object_name, self.delete_endpoint)

[docs] def delete_view(self, pk):
 """delete view function

 :param pk:
 the primary key of the model to be deleted.
 """
 obj = self.query_object(pk)
 form = self.delete_form_class(obj=obj)
 if form.validate_on_submit():
 obj.delete()
 message = self.delete_flash_message
 if message is None:
 message = self.object_name + ' deleted'
 if message:
 flash(message)
 return redirect(self.delete_redirect_url)
 context = {self.delete_form_name: form}
 return render_template(self.delete_template, **context)

[docs] def register_delete_view(self, blueprint):
 """register delete view to blueprint

 :param blueprint:
 the Flask Blueprint or Application object to which the delete view
 will be registered.
 """
 view = apply_decorators(self.delete_view, self.delete_decorators)
 blueprint.add_url_rule(
 self.delete_rule, self.delete_endpoint, view,
 methods=['GET', 'POST'])

[docs]class Base(object):
 """base class with properties and methods used by mixins"""

 #: views that will be registered when :meth:`register` is called
 views = {'detail', 'index', 'create', 'edit', 'delete'}

 #: views that will not be registered when :meth:`register` is called, even
 #: if they are also listed in :attr:`views`
 exclude_views = set()

 #: the model class, this attribute is **mandatory**
 model = None

 @property
 def object_list_name(self):
 """default name for variable representing list of objects in templates

 generated with :attr:`object_name` in detault implementation.
 """
 return self.object_name + '_list'

 @property
 def object_name(self):
 """default name for variable representing object in templates

 generated with the name of model class in detault implementation.
 """
 return getattr(self.model, '__name__', 'object').lower()

[docs] def __init__(self, **options):
 """create an instance of view generator

 all keyword arguments passed in will be set as the instance's
 attribute if the name is not starting with '_'
 """
 self.__dict__.update(
 (k, v) for (k, v) in options.items() if not k.startswith('__'))

[docs] def query_object(self, pk):
 """returns the object with matching :code:`pk`"""
 return self.model.query.get_or_404(pk)

[docs] def query_all(self):
 """returns all objects"""
 return self.model.query.all()

[docs] def register(self, blueprint):
 """register all enabled views to the :code:`blueprint`

 :param blueprint:
 the Flask Blueprint or Application object to which enalbed views
 will be registered.
 """
 for name in set(self.views) - set(self.exclude_views):
 getattr(self, '_'.join(['register', name, 'view']))(blueprint)

[docs]class Diced(Detail, Index, Create, Edit, Delete, Base):
 """CRUD views generator"""

 © Copyright 2016, Philip Xu.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Diced 0.2 documentation »

 All modules for which code is available

		flask_diced

 © Copyright 2016, Philip Xu.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

