
Flask-Diced Documentation
Release 0.1

Philip Xu

March 23, 2016

Contents

1 Flask-Diced Might Not Be What You Want 3

2 Flask-Diced is Extensible 5

3 Installation 7

4 License 9

5 Links 11

6 Example 13

7 API 15

8 Changelog 21
8.1 Version 0.1 . 21

Python Module Index 23

i

ii

Flask-Diced Documentation, Release 0.1

Flask-Diced is a set of helper classes for Flask that generates CRUD views and registers them to blueprint/application.

Flask-Diced provides:

• Detail view

• Index view

• Create view

• Edit view

• Delete view

Contents 1

http://flask.pocoo.org/

Flask-Diced Documentation, Release 0.1

2 Contents

CHAPTER 1

Flask-Diced Might Not Be What You Want

Flask-Diced is opinionated, it assumes:

• the model object has a save method for data persistence and delete method to remove itself.

• the model can be created with no required arguments.

• the form used for creation and editing are in the style of Flask-WTF‘s, specifically, Flask-Diced expects the
form accepts a named parameter obj to pass in the initial value for editing as well as validate_on_submit
method and populate_obj method on the form class. In short, just use Flask-WTF.

• the client should be redirected when done for POST requests.

• views should have minimal business logic.

3

https://pypi.python.org/pypi/Flask-WTF

Flask-Diced Documentation, Release 0.1

4 Chapter 1. Flask-Diced Might Not Be What You Want

CHAPTER 2

Flask-Diced is Extensible

Flask-Diced is designed in a way that customizations can be easily done. All properties and methods can be overridden
for customization.

Flask-Diced can be customized to the point that the assumptions described in last section are refer to the default
implementation and will no longer hold true if you customize relevant parts of it.

e.g.,

Want to change how the objects list is fetched?

Override query_all()

Want to change the name of endpoint of the edit view?

Redefine edit_endpoint

Want to use your own view function or control how views are registered?

Override respective view/register methods.

5

Flask-Diced Documentation, Release 0.1

6 Chapter 2. Flask-Diced is Extensible

CHAPTER 3

Installation

Flask-Diced is on PyPI.

pip install Flask-Diced

7

Flask-Diced Documentation, Release 0.1

8 Chapter 3. Installation

CHAPTER 4

License

BSD New, see LICENSE for details.

9

Flask-Diced Documentation, Release 0.1

10 Chapter 4. License

CHAPTER 5

Links

• Documentation

• Issue Tracker

• Source Package @ PyPI

• Mercurial Repository @ bitbucket

• Git Repository @ Github

• Git Repository @ Gitlab

• Development Version

11

http://flask-diced.readthedocs.org/
https://github.com/pyx/flask-diced/issues/
https://pypi.python.org/pypi/Flask-Diced/
https://bitbucket.org/pyx/flask-diced/
https://github.com/pyx/flask-diced/
https://gitlab.com/pyx/flask-diced/
http://github.com/pyx/flask-diced/zipball/master#egg=Flask-diced-dev

Flask-Diced Documentation, Release 0.1

12 Chapter 5. Links

CHAPTER 6

Example

The python code of an example application is included entirely here.

#!/usr/bin/env python
-*- coding: utf-8 -*-
from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.wtf import Form
from wtforms import TextField, SubmitField
from wtforms.fields.html5 import EmailField
from wtforms.validators import DataRequired, Email, ValidationError

from flask.ext.diced import Diced, persistence_methods

app = Flask(__name__)

Need this for WTForm CRSF protection
app.config['SECRET_KEY'] = 'no one knows'

Need this for SQLAlchemy
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///:memory:'

db = SQLAlchemy(app)

persistence_methods is a class decorator that adds save and delete methods
@persistence_methods(db)
class User(db.Model):

id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True)
email = db.Column(db.String(120), unique=True)

def unique(model, column, message='already exists'):
def unique_validator(form, field):

obj = model.query.filter(column == field.data).first()
if obj and obj.id != form._obj_id:

raise ValidationError(message)
return unique_validator

class UserForm(Form):
username = TextField('Username',

13

Flask-Diced Documentation, Release 0.1

[DataRequired(), unique(User, User.username)])
email = EmailField('Email',

[DataRequired(), Email(), unique(User, User.email)])

def __init__(self, **kwargs):
super(UserForm, self).__init__(**kwargs)
self._obj_id = kwargs['obj'].id if 'obj' in kwargs else None

class CreateUserForm(UserForm):
submit = SubmitField('Create')

class EditUserForm(UserForm):
submit = SubmitField('Update')

class DeleteForm(Form):
submit = SubmitField('Delete')

view decorator that does nothing, for showing how to add decorators to views
def no_op_decorator(view):

return view

create a view generator for User model, these two arguments for decorators
are here for demonstration purpose and are not mandatory
user_view = Diced(

model=User,
create_form_class=CreateUserForm,
edit_form_class=EditUserForm,
delete_form_class=DeleteForm,
index_decorators=[no_op_decorator],
edit_decorators=[no_op_decorator, no_op_decorator],

)

Register on application directly, works on Blueprint as well
user_view.register(app)

if __name__ == '__main__':
db.create_all()
app.run(debug=True)

In this example, Diced is used directly and required attributes are passed in when creating an instance of the class,
another way is to subclass and define required attributes as class attributes, as in:

class UserView(Diced):
model = User
create_form_class = CreateUserForm
edit_form_class = EditUserForm
delete_form_class = DeleteForm

user_view = UserView()
user_view.register(app)

14 Chapter 6. Example

CHAPTER 7

API

Flask-Diced - CRUD views generator for Flask

class flask_diced.Detail
Bases: object

detail view mixin

detail_decorators = ()
decorators to be applied to detail view

detail_endpoint = ‘detail’
the endpoint for the detail view URL rule

detail_rule = ‘/<int:pk>/’
the URL rule for the detail view

detail_template
default template name for detail view

generated with object_name and detail_endpoint

detail_view(pk)
detail view function

Parameters pk – the primary key of the model to be shown.

register_detail_view(blueprint)
register detail view to blueprint

Parameters blueprint – the Flask Blueprint or Application object to which the detail view
will be registered.

class flask_diced.Index
Bases: object

index view mixin

index_decorators = ()
decorators to be applied to index view

index_endpoint = ‘index’
the endpoint for the index view URL rule

index_rule = ‘/’
the URL rule for the index view

index_template
default template name for index view

15

Flask-Diced Documentation, Release 0.1

generated with object_name and index_endpoint

index_view()
index view function

register_index_view(blueprint)
register index view to blueprint

Parameters blueprint – the Flask Blueprint or Application object to which the index view
will be registered.

class flask_diced.Create
Bases: object

create view mixin

create_decorators = ()
decorators to be applied to create view

create_endpoint = ‘create’
the endpoint for the create view URL rule

create_flash_message = None
the message to be flashed for the next request when done

create_form_class = None
the form class for new object, with Flask-WFT compatible API

create_form_name = ‘form’
the name for variable representing the form in template

create_redirect_to_view = ‘.index’
the name of view to redirect the client to when done

create_redirect_url
the url the client will be redirected to when done

the default value is the url of create_redirect_to_view

create_rule = ‘/create/’
the URL rule for the create view

create_template
default template name for create view

generated with object_name and create_endpoint

create_view()
create view function

register_create_view(blueprint)
register create view to blueprint

Parameters blueprint – the Flask Blueprint or Application object to which the create view
will be registered.

class flask_diced.Edit
Bases: object

edit view mixin

edit_decorators = ()
decorators to be applied to edit view

16 Chapter 7. API

Flask-Diced Documentation, Release 0.1

edit_endpoint = ‘edit’
the endpoint for the edit view URL rule

edit_flash_message = None
the message to be flashed for the next request when done

edit_form_class = None
the form class for editing object, with Flask-WFT compatible API

edit_form_name = ‘form’
the name for variable representing the form in template

edit_redirect_to_view = ‘.index’
the name of view to redirect the client to when done

edit_redirect_url
the url the client will be redirected to when done

the default value is the url of edit_redirect_to_view

edit_rule = ‘/<int:pk>/edit/’
the URL rule for the edit view

edit_template
default template name for edit view

generated with object_name and edit_endpoint

edit_view(pk)
edit view function

Parameters pk – the primary key of the model to be edited.

register_edit_view(blueprint)
register edit view to blueprint

Parameters blueprint – the Flask Blueprint or Application object to which the edit view
will be registered.

class flask_diced.Delete
Bases: object

delete view mixin

delete_decorators = ()
decorators to be applied to delete view

delete_endpoint = ‘delete’
the endpoint for the delete view URL rule

delete_flash_message = None
the message to be flashed for the next request when done

delete_form_class = None
the form class for deletion confirmation, should validate if confirmed

delete_form_name = ‘form’
the name for variable representing the form in template

delete_redirect_to_view = ‘.index’
the name of view to redirect the client to when done

delete_redirect_url
the url the client will be redirected to when done

17

Flask-Diced Documentation, Release 0.1

the default value is the url of delete_redirect_to_view

delete_rule = ‘/<int:pk>/delete/’
the URL rule for the delete view

delete_template
default template name for delete view

generated with object_name and delete_endpoint

delete_view(pk)
delete view function

Parameters pk – the primary key of the model to be deleted.

register_delete_view(blueprint)
register delete view to blueprint

Parameters blueprint – the Flask Blueprint or Application object to which the delete view
will be registered.

class flask_diced.Base(**options)
Bases: object

base class with properties and methods used by mixins

__init__(**options)
create an instance of view generator

all keyword arguments passed in will be set as the instance’s attribute if the name is not starting with ‘_’

exclude_views = set([])
views that will not be registered when register() is called, even if they are also listed in views

model = None
the model class

object_list_name
default name for variable representing list of objects in templates

generated with object_name in detault implementation.

object_name
default name for variable representing object in templates

generated with the name of model class in detault implementation.

query_all()
returns all objects

query_object(pk)
returns the object with matching pk

register(blueprint)
register all enabled views to the blueprint

Parameters blueprint – the Flask Blueprint or Application object to which enalbed views
will be registered.

views = set([’edit’, ‘index’, ‘create’, ‘detail’, ‘delete’])
views that will be registered when register() is called

class flask_diced.Diced(**options)
Bases: flask_diced.Detail, flask_diced.Index, flask_diced.Create,
flask_diced.Edit, flask_diced.Delete, flask_diced.Base

18 Chapter 7. API

Flask-Diced Documentation, Release 0.1

CRUD views generator

flask_diced.persistence_methods(datastore)
class decorator that adds persistence methods to the model class

Parameters datastore – SQLAlchemy style datastore, should sopport
datastore.session.add(), datastore.session.delete() and
datastore.session.commit() for model persistence.

Two persistence methods will be added to the decorated class

save(self, commit=True) the save method

delete(self, commit=True) the delete method

19

Flask-Diced Documentation, Release 0.1

20 Chapter 7. API

CHAPTER 8

Changelog

8.1 Version 0.1

• Initial public release

21

Flask-Diced Documentation, Release 0.1

22 Chapter 8. Changelog

Python Module Index

f
flask_diced, 15

23

Flask-Diced Documentation, Release 0.1

24 Python Module Index

Index

Symbols
__init__() (flask_diced.Base method), 18

B
Base (class in flask_diced), 18

C
Create (class in flask_diced), 16
create_decorators (flask_diced.Create attribute), 16
create_endpoint (flask_diced.Create attribute), 16
create_flash_message (flask_diced.Create attribute), 16
create_form_class (flask_diced.Create attribute), 16
create_form_name (flask_diced.Create attribute), 16
create_redirect_to_view (flask_diced.Create attribute), 16
create_redirect_url (flask_diced.Create attribute), 16
create_rule (flask_diced.Create attribute), 16
create_template (flask_diced.Create attribute), 16
create_view() (flask_diced.Create method), 16

D
Delete (class in flask_diced), 17
delete_decorators (flask_diced.Delete attribute), 17
delete_endpoint (flask_diced.Delete attribute), 17
delete_flash_message (flask_diced.Delete attribute), 17
delete_form_class (flask_diced.Delete attribute), 17
delete_form_name (flask_diced.Delete attribute), 17
delete_redirect_to_view (flask_diced.Delete attribute), 17
delete_redirect_url (flask_diced.Delete attribute), 17
delete_rule (flask_diced.Delete attribute), 18
delete_template (flask_diced.Delete attribute), 18
delete_view() (flask_diced.Delete method), 18
Detail (class in flask_diced), 15
detail_decorators (flask_diced.Detail attribute), 15
detail_endpoint (flask_diced.Detail attribute), 15
detail_rule (flask_diced.Detail attribute), 15
detail_template (flask_diced.Detail attribute), 15
detail_view() (flask_diced.Detail method), 15
Diced (class in flask_diced), 18

E
Edit (class in flask_diced), 16

edit_decorators (flask_diced.Edit attribute), 16
edit_endpoint (flask_diced.Edit attribute), 16
edit_flash_message (flask_diced.Edit attribute), 17
edit_form_class (flask_diced.Edit attribute), 17
edit_form_name (flask_diced.Edit attribute), 17
edit_redirect_to_view (flask_diced.Edit attribute), 17
edit_redirect_url (flask_diced.Edit attribute), 17
edit_rule (flask_diced.Edit attribute), 17
edit_template (flask_diced.Edit attribute), 17
edit_view() (flask_diced.Edit method), 17
exclude_views (flask_diced.Base attribute), 18

F
flask_diced (module), 15

I
Index (class in flask_diced), 15
index_decorators (flask_diced.Index attribute), 15
index_endpoint (flask_diced.Index attribute), 15
index_rule (flask_diced.Index attribute), 15
index_template (flask_diced.Index attribute), 15
index_view() (flask_diced.Index method), 16

M
model (flask_diced.Base attribute), 18

O
object_list_name (flask_diced.Base attribute), 18
object_name (flask_diced.Base attribute), 18

P
persistence_methods() (in module flask_diced), 19

Q
query_all() (flask_diced.Base method), 18
query_object() (flask_diced.Base method), 18

R
register() (flask_diced.Base method), 18
register_create_view() (flask_diced.Create method), 16

25

Flask-Diced Documentation, Release 0.1

register_delete_view() (flask_diced.Delete method), 18
register_detail_view() (flask_diced.Detail method), 15
register_edit_view() (flask_diced.Edit method), 17
register_index_view() (flask_diced.Index method), 16

V
views (flask_diced.Base attribute), 18

26 Index

	Flask-Diced Might Not Be What You Want
	Flask-Diced is Extensible
	Installation
	License
	Links
	Example
	API
	Changelog
	Version 0.1

	Python Module Index

